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We consider balanced incomplete block data when ties occur and 
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effects of ranks and (d) linear contrasts. A sensory evaluation 
example where the data are ranks is given. 
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1 Introduction 
 
Preference ranking to compare products is well known, and statistical procedures 
are commonly used to verify that apparent differences between product rankings 
are due to other than chance effects. Sometimes in taste-testing experiments 
there are too many products for one judge or consumer to reliably compare at 
one sitting. This loss of reliability is often associated with sensory fatigue. In 
such cases balanced incomplete block designs can be employed whereby each 
judge or consumer tastes only some of the products. The nonparametric analysis 
described here could, of course, be applied to any set of balanced incomplete 
block data. 

Let Nij be the count in the (i, j)th cell of the t × k table of counts based on 
the ranks of t products ranked k at a time by b consumers or judges. The number 
b is chosen so that if k < t then each product is equally replicated r times, where 
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r = bk/t. This Nij is the number of times that product i receives rank j. If there are 
no product differences the expectation of Nij is r/k. If X2 is the usual 

  observed − expected( )2 / expected∑  Pearson chi-squared statistic for testing 
homogeneity of the distributions in a t × k table of counts, then SCHACH (1979) 
showed that asymptotically 
 

A = {(t - 1)/t}X2 
 
has the 

    
χ k−1( ) t −1( )

2  distribution. The statistics A and X2 are omnibus statistics.  
For data with no ties define the average or linear effect for the ith 

product, Mi say, as 
 

  

 

Mi =
t −1
rt

 
 
 

 
 
  Nij

j=1

k

∑ g1( j)  

 
and the quadratic effect for the ith product by 
 

  

 

Vi =
t −1
rt

 
 
 

 
 
  Nij

j=1

k

∑ g2( j ) 

 
in which 
 

  

 

g1( j ) =
12

( k2 −1)
 j −

k +1
2

 
 
 

 
 
 

  

 
and  

 

  

 

g2( j ) =
180

( k2 −1)( k2 − 4 )
 j −

k +1
2

 
 
 

 
 
 

2
−

k2 −1
12

 
 
 

  

 
 
 

  
. 

 
As Mi is defined in terms of a linear polynomial g1(j) we say it is a linear effect. 
Similarly we say Vi is a quadratic effect as g2(j) is a quadratic polynomial. The 
definition of Mi involves a difference between the sample mean rank for product 
i and its expected value assuming a uniform spread of ranks. Similarly Vi 
involves a difference between the sample variance of the ranks and its expected 
value assuming a uniform spread of ranks. The values mi of Mi separate the 
products according to mean rankings. A high negative value vi of Vi implies that 
the rankings are clumped around the middle rankings, whereas a large positive vi 
implies that the ranks are at one end or are in two clumps around both high and 
low rankings. Two clumps indicate either a lack of consensus - market 
segmentation - or else non-uniform product. One clump indicates consensus.  

Clearly to define Mi we need k > 1 and to define Vi we need k > 2. The 

statistic 

 

Mi
2

i=1

t∑ is the well-known Durbin rank test that looks for average rank 
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differences between products. The statistic 

 

Vi
2

i=1

t∑  was introduced in RAYNER 
and BEST (2001, p.123) and assesses dispersion differences between products. 

The above statistics allow analysis of ranked data from balanced 
incomplete block designs when none of the ranks are tied - the forced choice 
ranking situation. In this note we suggest statistics that allow for tied rankings. In 
the next section we present an example with tied rankings and give some tables 
of counts to assist with the analysis. This example is carried through the 
remainder of the paper. In section 3 we look at linear effects for our example 
data and in section 4 we extend the statistic A to cope with tied ranks. Section 5 
considers partitioning the adjusted Durbin statistic. The Appendix shows how to 
partition the extended A statistic so that quadratic and higher order effects can be 
examined. The statistics we propose are based on those for the randomized 
complete blocks design given in BROCKHOFF et al. (2004). See further 
comments in Appendix (ii). 

An alternative approach outlined by ALVO and CABILIO (1998) may 
give a statistic analogous to A. We will not discuss this alternative approach here 
as our purpose is just to present and illustrate our new test statistics. Earlier work 
on the randomized complete block design was presented by Anderson (1959) 
and Kannemann (1976). 
 
 
2 Canned fruits example 
 
Suppose we have a taste-test involving t = 9 brands of canned fruit ranked k = 3 
at a time by b = 12 judges, so that each brand is replicated r = 4 times. 
Acceptability rankings were obtained and are given in Table 1.  
 
 
Table 1. Acceptability rankings for nine brands of canned fruit 

 Brand  
Judge A B C D E F G H I 

1 2.5 1 2.5 - - - - - - 
2 - - - 2 1 3 - - - 
3 - - - - - - 3 2 1 
4 2.5 - - 1 - - 2.5 - - 
5 - 2 - - 1 - - 3 - 
6 - - 3 - - 2 - - 1 
7 3 - - - 2 - - - 1 
8 - - 3 1 - - - 2 - 
9 - 1 - - - 2 3 - - 
10 - - 2 - 1 - 3 - - 
11 1.5 - - - - 3 - 1.5 - 
12 - 2 - 2 - - - - 2 

 
 
From Table 1 we can form a summary products (brands) by ranks matrix. For 
each judge we assign tied ranks by recording 1/m for rankings involving an m-
way tie. Thus, for example, judge one gives each of brands A and C half a rank 
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of 2 and half a rank of 3 while brand B is given a rank of 1. Table 2 shows the 
brands by ranks matrix for the first judge only, while Table 3 is formed by 
summing over all judges, so the counts in Table 3 are the Nij values for the 
canned fruit data. 
 
 
Table 2. Brands by ranks matrix of counts for judge 1 

  Rank  
Brand 1 2 3 

A 0   
1
2    

1
2  

B 0 1 0 
C 0   

1
2    

1
2  

 
 
Table 3. Brands by ranks matrix of counts 

 Rank 
Brand 1 2 3 

A   
1
2    1

1
2  2 

B 2 1
3  11

3  1
3  

C 0   1
1
2    2

1
2  

D 2 1
3  11

3  1
3  

E 3 1 0 
F 0 2 2 
G 0   

1
2    3

1
2  

H   
1
2    2

1
2  1 

I 3 1
3  1

3  1
3  

 
 
3 Linear effects 
 
Whether there are ties or not, Table 3 is not the usual type of contingency table 
as the sum of the row counts is always r. Further, in Table 1 note that the sum of 
the ranks is always k(k+1)/2. These restrictions imply that it is not valid to check 
the homogeneity of the nine distributions of ranks given in Table 2 by 
calculating Pearson’s X2. For k = 3, g1(j) = 1.2247 (j - 2) for j = 1, 2, 3 but when 
there are ties the linear effects, Mi, need adjustment by a factor, a1 say, which 

depends on g1(j) and the ties structure. For when there are ties 

 

Mi
2

i=1

t∑  no 

longer has a χ2 distribution. However for large k 
 

 

S = Mi
2

i=1

t

∑
 

 
  

 

 
  /a1 

 
will have an approximate chi-squared distribution with t - 1 degrees of freedom 
under the null hypothesis of no treatment effect. Specifically the factor is 
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a1 =   g1
TUg1 /(rt), 

 
where g1

T = (g1(1), g1(2), … , g1(k)) and the (d, w)th element of U = (Uij) counts 
the times rank d and rank w are tied. If, for any judge, the ranks d, … , d + m - 1 
are tied, then 1/m is added to each of the m2 cells in the corresponding submatrix 
of U, that is, to the elements Uij for i, j = d, … , d + m - 1. Clearly the matrix, 
formed by summing over all judges, is symmetric. For the brand acceptability 
data Table 4 gives U. To confirm this note that Judge 1, for example, contributes 
to U with 0.5 for the (2, 2)th, (2, 3)th, (3, 3)th and (3, 2)th cells and 1 to the (1, 
1)th cell. See Table 5. If there are no ties a1 = 1. Here a1 = 0.854167. 
 
 
Table 4. Ranks by ranks matrix of counts 

 Rank 
Rank 1 2 3 

1 10 5
6  5

6  1
3  

2 5
6  9 5

6  11
3  

3 1
3  11

3  10 1
3  

 
 
Table 5. Ranks by ranks matrix of counts for judge 1 

 Rank 
Rank 1 2 3 

1 1 0 0 
2 0   

1
2    

1
2  

3 0   
1
2    

1
2  

 
 
Using the Table 4 counts we find the adjusted effects Mi/

 

a1  for i = 1, … , t 
shown in Table 6. These adjusted effects can then be used to calculate our new 
Durbin statistic adjusted for ties, S =     Mi

2
i=1
t∑ / a1 = 19.9 on 8 degrees of 

freedom giving a p-value close to 0.01 using either the chi-squared distribution 
or a permutation test.  
 
 
Table 6. Ordered linear adjusted effects and multiple comparisons  
Brand (i) Linear Effects (Mi/

 

a1 ) Multiple Comparisons 
E (5) -1.8741a a 
I (9) -1.8741a a 
B (2) -1.2494ab ab 
D (4) -1.2494ab ab 
H (8) 0.3124bc bc 
A (1) 0.9370bc bc 
F (6) 1.2494bc bc 
C (3) 1.5617c c 
G (7) 2.1863c c 



BIB Ranked Data With Ties                                                       D.J. Best, P.B. Brockhoff and J.C.W. 
Rayner 

6 

 
 

Multiple comparisons between the 

 

Mi / a1  can be given using the fact 
that   

 

( Mi - M j )/ a1  are approximately N(0, 2) when i ≠ j. This approximation 
may be justified using an approach similar to that in BROCKHOFF et al. (2004). 
Table 6 also gives least significant difference multiple comparisons for the 
present data set. The same superscript indicates the brand linear effects are not 
significantly different at the 5% level. There are thus three groups judged to be 
similar: first E, I, B and D, second B, D H, A and F and finally H, A, F, C and G. 
 
 
4 Schach’s statistic for tied ranks 
 
The statistics given so far assess linear effects when there are tied ranks. It is 
also useful to have an omnibus statistic that potentially detects any sort of 
differences in the response distributions of the products being compared. For 
untied ranks SCHACH (1979) gives such an omnibus homogeneity statistic. We 
now give a generalization of Schach’s statistic that allows for tied ranks. For i = 
1, … , t, let zi be vectors of k - 1 elements given by 
 

zi = 

 

((Ni1 − r / k) k / r ,  (Ni2 − r / k) k / r ,  ... ,  (Ni k−1( ) − r / k) k / r )T . 
 
Further, take R* = (U/b - 1/k) where U is the matrix of counts defined above and 
1 is the matrix with every element equal to unity. If the data are untied U/b is the 
identity matrix. If all possible ranks are untied at least once, a statistic, which 
reduces to Schach’s statistic when there are no ties, is 
 

      
A =

t −1
t

 
  

 
   zi

T

i =1

t

∑ R −1zi   

 
where R is R* with the last row and column deleted. 

For the canned fruit brands acceptability data we have 
 

z1 = (-0.7217, 0.1444), z2 = (0.8660, 0.0000), z3 = (-1.1547, 0.1444) 
z4 = (0.8660, 0.0000), z5 = (1.4434, -0.2887), z6 = (-1.1547, 0.5774) 

z7 = (-1.1547, -0.7217), z8 = (-0.7217, 1.0104), z9 = (1.7321, -0.8660) 
 

R = 
  

0.5694 - 0.2639
- 0.2639 0.4861

 
 
  

 
 and R-1 = 

  

2.3464 1.2738
1.2738 2.7486

 

 
 

 

 
 . 

 
We find A = 24.74. By an argument similar to that in BROCKHOFF et al. 
(2004), A has an approximate chi-squared distribution with (t - 1)(k - 1) = 16 
degrees of freedom; see Appendix (ii). We find A has an approximate p-value of 
0.07. This p-value is close to the permutation test p-value of 0.05. Durbin’s 
statistic adjusted for ties accounts for most of A (19.9 on 8 degrees of freedom) 
and so we would conclude that only linear effects are important for this data set. 
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For tied data we need a new second order polynomial if we wish to have 
a dispersion test - see Appendix (i). 

The calculations outlined in Appendix (i) may not always be needed. A 
fairly complete analysis may involve calculation of just A, Durbin’s statistic 
adjusted for ties and the difference of these two statistics which we suggest has 
an approximate chi-squared distribution with (t - 1)(k - 2) degrees of freedom. 
This difference statistic indicates whether there are nonlinear effects which, in a 
sensory evaluation application, could be caused by market segmentation or 
nonuniform product. Such effects do not appear evident for the canned fruit data. 

Although it is not the case here, it can happen that the components of A 
can be significant when A is not. A significant value of Durbin’s statistic does 
not always mean A will be significant as the omnibus A statistic may ‘dilute’ the 
effect of the specific component statistics. Thus it is important to look at the 
components of A as well as A itself. An omnibus test like A has some power 
against many alternatives but does not always have good power against specific 
alternatives of interest such as whether the mean ranks differ. 

Executable code for a PC which calculates the generalized A statistic, as 
well as the Durbin statistic for ties and permutation test p-values, is available 
from the first author. If k = t then A becomes the generalized Anderson statistic 
discussed in BROCKHOFF et al. (2004).  
 
 
5 Partitioning Durbin’s statistic 
 
If we want to know, for the Table 1 data, whether the average rank for brand B 
differs from the average of the average ranks for brand A and C we can form the 
linear contrast, L say, given by 
 

 

1.5a1 L = M2 − (M1 + M 3) /2{ }2. 
 
For the Table 1 data, L = 4.9 and S - L = 15.0 with p-values, based on the 
approximating chi-squared distributions (with 1 and (t - 2) = 7 degrees of 
freedom respectively), both less than 0.05. The constant 1.5 is derived, as is 
usual with linear contrasts, by calculating the sum of squares of the coefficients 
in the contrast, so that in this case 1.5 = 12 + 2(0.5)2. 

Linear contrasts could also be used to partition the dispersion statistic or 
other linear contrasts, as appropriate, could be examined. 
 
 
6 Conclusion 
 
In this note we have considered balanced incomplete block data and proposed 
new statistics for testing (a) differences in mean ranks when there are ties, (b) 
differences in distributions of ranks with ties, (c) differences in nonlinear effects 
of ranks with ties and (d) linear contrasts. We gave a sensory evaluation example 
where the data were ranks. In some applications the data may be obtained as 
category rating data or as continuous line scale data and it may be appropriate to 
rank such data. This might be because, for example, the categories are not 
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equispaced and so assigning scores 1, 2, 3, … is not valid. Alternatively, a 
consumer who gives continuous line scale scores of 40 and 80 may not really 
mean that one product had twice the acceptability of the other. With categorical 
and continuous line scale data perhaps it is worth doing both the normal 
parametric analysis and the nonparametric ranking analysis we have given here.  
 
 
Appendix 
 
(i) If we require a dispersion test and the data are tied then we need to redefine g2 
= (g2(j)). Initially take g2(j) = (j2 + c1j + c0) for j = 1, … , k where the constants 
are to be determined. The orthogonality constraints require 

    
g2( j)j=1

t∑  = 0 and 

    g1
TUg 2  = 0. This allows us to solve two linear equations for the two unknown 

constants. We also require a normalizing constant, say E, such that with g2(j) = 
E0.5(j2 + c1j + c0),     g2

T U/b( )g2  = k. Similarly, if k > 3, we can redefine g3, g4, and 
so on. BROCKHOFF et al. (2004) discusses the approach in this Appendix in 
greater detail. 
 
(ii) In the text above we state that certain statistics have approximate normal or 
chi-squared distributions. This can be verified by use of permutation tests or by 
easy adjustments to the theory given in BROCKHOFF et al. (2004). If the reader 
does try these adjustments it is worth noting that for the balanced incomplete 
block case 
 

E(Nij) = r/k 
and 

 cov(  N jl ,  
N j 'l ' ) = 

    

U
ll'
( jj ' )

k
−

b
kt

 for   j = j '  and     l,  l
'  tied together 

  = 
kt
b−  for   j = j '  and     l,  l

'  not tied together 

  = 
      

b
kt(t −1)

−
U

ll '
( jj ' )

k(k −1)
 for  j ≠ j ' and     l,  l

'  tied 

together  

  = 
)t(kt

b
1−

 for   j ≠ j '  and     l,  l
'  not tied together, 

 
where     U

( jj ' )  for   j = j '  equals the rank-by-rank matrix of counts based on the r 

blocks in which treatment   j = j '  was presented and     U
( jj ' )  for 'jj ≠  equals the 

rank-by-rank matrix of counts based on the λ = bk(k - 1)/{t(t - 1)} blocks in 
which treatment j  and   j

'  were presented together. We have suggested 
following BROCKHOFF et al. (2004) and using a rank-by-rank matrix U based 
on all b blocks. This would only be strictly valid if the average tie-structures are 
the same across all such subsets of blocks 
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U( jj)

r
=

U( jj ' )

λ
=

U
b

. 

 
However, whenever this holds asymptotically,  
 

      

U( jj)

r
−

U
b

→ 0  and 
      

U( jj ' )

λ
−

U
b

→ 0 , 

 
and the approach is still valid. 
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